Outcomes of fenestrated endovascular repair of juxtarenal aortic aneurysm

Thorarinn Kristmundsson, MD, PhD
Vascular Center Malmö-Lund
Skåne University Hospital
Fenestrated endovascular repair for juxtarenal aortic pathology

Thorarinn Kristmundsson, MD, Björn Sonesson, MD, PhD, Martin Malina, MD, PhD, Katarina Björnes, MD, Nuno Dias, MD, PhD, and Timothy Resch, MD, PhD, Malmö, Sweden

Objective: To evaluate the outcomes after fenestrated endovascular aortic repair (f-EVAR) in a tertiary European referral center.

Methods: All patients treated with commercially available custom-made f-EVAR between September 2002 and June 2007 were prospectively enrolled in a computerized database including co-morbidities and aneurysm morphology. Patients were retrospectively analyzed. Follow-up consisted of clinical examinations and computed tomography (CT) scanning.

Results: A total of 54 patients were included in this study. Median age was 72 (interquartile range [IQR] 68-76) years and 85% were men. Median preoperative aneurysm diameter was 60 (53-66) mm. One hundred thirty-four vessels were targeted (43 scallops, 91 fenestrations) and 96 stents were placed (69 bare, 27 covered). Target vessel catheterization was achieved in 98% of cases. Two patients (3.7%) died within 30 days, 1 from trash embolization and multiorgan failure and 1 from retroperitoneal bleeding caused by a renal artery perforation. Three type I endoleaks occurred intraoperatively, two sealed pre-discharge and one was treated with a Palmaz stent (Cordis, Miami Lakes, Fla) on postoperative day 4. Thirteen patients had type II endoleaks, and 2 required treatment. The median clinical follow-up was 25 (12-32) months with median CT follow-up of 22 (4-26) months. Aneurysm diameter decreased ≥5 mm in 47%, was unchanged in 50%, and increased ≥5 mm in 3% of patients at 1 year. There were three type II endoleaks at 1-year follow-up, one of which was successfully treated after 19 months due to aneurysm growth. Ninety-six percent of target vessels remained patent during the study period and all occlusions occurred within the first year of follow-up. Five target vessels occluded (2 renal arteries [RAs] and 3 superior mesenteric arteries [SMAs]) without symptoms during follow-up and successful reinterventions were done on 2 stenosed RAs. Three patients suffered creatinine increase but none needed dialysis. One late aneurysm-related death occurred due to massive bleeding during redo surgery for infection.

Conclusion: Despite complex anatomy or severe comorbidities in these patients f-EVAR has acceptable short- and midterm results in this series which includes a learning curve and offers a valid treatment alternative to patients unsuitable for standard EVAR or open repair. (J Vasc Surg 2009;49:568-75.)
Outcomes of fenestrated endovascular repair of juxtarenal aortic aneurysm

Thórarinn Kristmundsson, MD, PhD, Björn Sonesson, MD, PhD, Nuno Dias, MD, PhD,
Per Törnqvist, MD, Martin Malina, MD, PhD, and Timothy Resch, MD, PhD, Malmö, Sweden

Objective: To evaluate late outcomes after fenestrated endovascular aortic repair (f-EVAR) in a tertiary European referral center.

Methods: In 2009, we published short- and midterm results after f-EVAR in the first 54 patients treated with this technique at our center between September 2002 and June 2007. In this paper, we provide long-term follow-up of the same patient cohort with the main focus on target vessel (TV) patency, renal function, reinterventions, and survival.

Results: A total of 54 patients were included in this study. Median age was 72 years (interquartile range [IQR], 68-76 years) at primary operation, and 85% were men. Median preoperative aneurysm diameter was 60 mm (IQR, 53-66 mm). One hundred thirty-four vessels were targeted (mean, 2.5 per patient), and 96 TV stents were placed. The median clinical follow-up was 67 months (IQR, 37-90 months), and computed tomography follow-up was 60 months (IQR, 35-72 months). Aneurysm diameter decreased ≥5 mm in 39% ± 7% at 12 months, 64% ± 8% at 36 months, and 71% ± 8% at 60 months. Primary TV patency was 94% ± 2% at 12 months, 91% ± 3% at 36 months, and 90% ± 3% at 60 months. Glomerular filtration rate decreased by 17% at 59 months (IQR, 26-73 months) follow-up (60 [IQR, 46-79] vs 50 [IQR, 38-72] mL/min/1.73 m²; P < .001), and one patient became dialysis-dependent secondary to a renal stent occlusion. Reintervention-free survival was 88% ± 5% at 12 months, 69% ± 7% at 36 months, and 56% ± 5% at 60 months. At least one reintervention was done in 37% of patients, of which 29% were endoleak-related, 26% TV-related, 13% graft-limb-related, and 32% due to other causes. The majority of reinterventions (68%) were based on complications detected on routine follow-up. Estimated overall survival was 93% ± 4% at 12 months, 76% ± 6% at 36 months, and 60% ± 7% at 60 months. In total, 54% of the patients died during the 10-year study period, where 9% died of aneurysm-related causes.

Conclusions: Long-term mortality after f-EVAR is high, but most patients die from nonaneurysmal causes. Aneurysm-related mortality is associated with technical complications that can be reduced with increased experience. Reinterventions are common, and most complications are detected on routine follow-up. (J Vasc Surg 2014;59:115-20.)
Long-term follow-up

- Same patient cohort
- Clinical follow-up 67 months
- CT and GFR follow-up 60 months
Results
AAA diameter

Decrease ≥5 mm

39% at 12 months
64% at 36 months
71% at 60 months
Renal function

17% decline in GFR
Renal function

50% GRF ≤ 60

26% Decrease > 30%

Occlusion (n=1)
No stenosis (n=6)

50% GFR > 60

26% Decrease > 30%

Stenosis (n=1)
No stenosis (n=6)
Target vessel patency

Primary vs assisted patency
- Primary patency
- Primary assisted patency
- Primary patency-censored
- Primary assisted patency-censored

Cum Survival

96% 93% 93%

94% 91% 90%

Follow-up (months)

Months of follow-up

Patients at risk

<table>
<thead>
<tr>
<th>Months of follow-up</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients at risk</td>
<td>48</td>
<td>38</td>
<td>35</td>
<td>29</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>
TV patency

134 TV

8 Stenosis (6%)
- 6 Stented
- 2 Untreated

8 Occlusions (6%)
- 5 Renals
- 3 SMA
Re-interventions

20 patients (37%)

- Endoleak 29%
 - 5 Type I
 - 2 Type II

- Target vessel 26%
 - 5 Renal
 - 1 SMA

- Graft limb 13%
 - 1 Stenosis

- Other 32%
 - 3 Occlusions

68% of re-interventions based on complications detected on routine follow-up
Survival

All cause mortality

93% 76% 60%

<table>
<thead>
<tr>
<th>Months of follow-up</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients at risk</td>
<td>49</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>32</td>
<td>22</td>
</tr>
</tbody>
</table>

Follow-up (months)
Mortality

- 54% (n=29)
 - 7% Operative (n=2)
 - SMA embolization
 - Renal bleeding
 - 10% AAA related during FU (n=3)
 - 83% Unrelated causes (n=24)
 - Bleeding
 - Rupture
 - Infection
Conclusion

• Long-term mortality is high but mostly non-aneurysm related
• Aneurysm related mortality is associated with technical complications that can be reduced with increased experience and better understanding of the stent graft behavior
• Re-interventions are common 37%
• most complications are detected on routine CT follow-up 68%
• Knowledge of failure mechanisms is vital to adequately evaluate postoperative imaging
Thank you!